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AlJstratt-The problem is solved by using a Hankel transformation. The stress and displacement expressions
are explicitly given for any point of the medium. Curves of numerical results are presented.

1. NOTATION

The following symbols are used in this paper:

T, 6, z cylindrical co-ordinates
(Til stress components
E,s strain components

111'"'2'11
u" 110, w displacements

J. Bessel functions
%0 Hankeltransformation

P contact force
R radius of sphere

E, (T elastic constants of sphere
a radius of the area of contact

Po applied stress in centre of contact
a.s elastic coefficients of anisotropic half-space

, 1.1,,(1.111 -a,J
a '"' aua•• -al.
b ,",1.1,.(1.1,.+1.1...)-1.1"1.1,,

alla.. -al,
a,.(all- a,J+ alla...

C'"' alla.. - al,
d- a~,-a~,

alla.. - a~._(a' +C+y{(a' +C)'-4d])112
s,- 2d

_(a' +C -y[(a' +C)'-4d])tl2s.- 24
1','"' I-a's/
#12'"' I-a's/
q, '"' (b - a'sl)p,
q.=(b -a's,')p,
v'"'(b-IWd

a'c-4
(b -I)(a' +yd)

1£ a'c-4
• SIS, JIS,'"'" "'1.1.. --+(1.1,,-1.1,,)

s.-s, s,-s,,
8. '" a....!!!L+(a,,-all) vs. PI.

S.-St s.-s,
•k _ s,

'-(s.-s,W4
•I,=vs,p.

s.-s,
•I. = vs.p,

S2- S ,

2. INTRODUCTION

The contact problem in isotropic elastic media is now well understood and solutions to a large
number of cases have been obtained. In the case of anisotropic media the basic equations are
much more complicated and few results are known. In this paper we consider the so-called Hertz
problem, of finding the stresses and displacomeftts produced inside two elastic bodies when they
are pressed together. More precisely we consider the elastic punching between a transversely
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isotropic half-space and an isotropic sphere. The punching is executed without friction and in the
direction of the axis of elastic symmetry of the medium, so that we have an axially symmetric
problem.

The problem of a concentrated normal load on a transversely isotropic half-space was solved
by Lekhnitski [2].

Willis[4] considered this Hertz problem for anisotropic bodies. Although he did not find a
complete analytic solution to this problem, he determined the area of contact and the pressure
distribution between the bodies.

Here we present a simple and complete analytic solution to the transversely isotropic contact
problem.

In Section 3, the basic equations are stated together with the boundary conditions. The solution
is given in Section 4.

In the last section, we show the influence of this anisotropy.

3. BASIC EQUATIONS

Let us consider a homogeneous transversely isotropic half-space whose surface lies in the
horizontal (r, 9) plane and whose axis of elastic symmetry (z) is vertical. For this material, there
are five elastic coefficients.

The stress-strain relationship associated with frictionless axi-symmetric loading are:

(1)

where the strain components are defined as:

au,
E" = -a;: ,

The equations of equilibrium are:

U,
EBB =,' aw

Ezz = oz' (2)

and the equations of compatibility transformed by relations (1) are:

o
(a12 - a 11)(0'88 - 0'") - r or (aI1U88 + alZu" + anUzz) =0,

a 0 2 _ a2urz _

az2(a 120'88 +a 110'" +anUzz) +ar2 (anU88 +anU" +a33UZZ ) a44 ariJz - O.

The boundary conditions are taken as:

(i) r or z infinite

0'" = 0'88 = Uzz =Un =O.

(3)

(4)

(5)

(6)

(7)

(0) On the horizontal surface (z = 0)

_ {-p(r)
Un =0, Uzz - 0

r~a

r;;a:a (8)
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where p(r) is the pressure distribUtion on the area of contact. This pressure ha~ been determined
already[t-3]

with:

(9)

_ [3PR (81 - 82 1- U
2
)] 1/2a- - --+--

4 2 E

jjh 82 are defined in Section 1.

and 3P
Po = 21Ta2· (10)

4. GENERAL SOLUTION

(a) Determination of an intermediate function (j)

As it is descri"ed for example in' [5}. We can show easily, by substitution, that theeqlis (3), (5)
and (6) are identically satisfied if we introduce an intermediate function (j) such that:

In this case, the corresponding values of the displacements are:

ue =0,

(11)

(12)

From the second equation of equilibrium (4), we obtain the following partial differential equatiQn:

Using the boundary conditions, we can now completely solve the problem. We look for (j) in
the form of a product:

(j) = Z(tz)· JJ..tr), (14)

where t is a dimensional parameter. We shall eliminate t by an integration. By substituting (14)
into (13), we o"btain for Z the linear differential equation:

dZ(4)(tZ) - (a ' +c)Z"(tz) +Z(tz) = O. (15)

The stresses which are determined by the function (j) must satisfy the conditions at infinite (7);
tHen we have~

(j) = (e(t)e-'I tz +D(t) e-··tZ)JJ..tr). (16)
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The function tp obtained by integrating expression (16) with respect to t from 0 to ex) is also a
solution of eqn (13). From now on we use the following expression which will also be called tp:

(17)

The stresses (Tn and (T,., found by means of formulae (11) are also represented in the form of
integrals:

Un" - L~ [C(t) .-·'''s,(ds,' - el +D(tl .-"'·s~ds,'-ellt'J,(tr) dt,}
_ (18)

(Trz= - L[C(t)e-·,tz(a's/-l)+D(t)e-·z'
Z (a's22-1)]t 3Jt(tr)dt.

We have seen (9) the pressure distribution on the area of contact is equal to:

r:!E;',a
r;;<::a

(19)

If g(t) is the function obtained by the Hankel transformation of p(r), we have:

(
sin at cos at)

g(t) = :f{o(p(r» = Po f.ij3--t2-

and also:

1'" (Sin at cos at)p(r) = :It'o(g(t)) =po 0 f.ij3--e- tJo(tr) dt.

(20)

(21)

By satisfying boundary conditions (8), relations (18) for z =0, which are identical to the
expression (21) of p(r), give the following system:

C (d 2 D 'd 2 Po (Sin at cos at) }SI SI -c)+ 52\ S2 -c)= e f.ij3-[2 ,

C(a'S12_l)+ D(a's/-l) = O.

Hence:

Then, the final formula for the intermediate function is:

(22)

(23)

(b) Stress and dilglacement distril1utwns in the medium
Let us substitute expression (24) into formulae (11) and (12). We obtain stress and

displacement expressions in the form of integrals:
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= {_ 1 i"( -0.1% - -02,.)(sin at _ cos at)],. it )dt
0',. po ( )~ /d sle sze tZ t 0\ rSI- 8z V 0 a

v r" ( -0 ,. - .." )(Sin at cos at)J ( )dt}
+r(sl-sz)Jo slPze • -szPle ----ai3----r Itr ,

_ { yd r" -0', -0" (sin at_ cos at)
O'/HI - po (81 _ sz)(a' c _ d) Jo (slqz e I - 8zql e 2) atZ t Jo(tr) dt

v roo ( -0 •• -0 I%)(sin at cos at)J (t ) dt}
- r(8

1
- sz»)0 slpze • -szPle 2 7--t-Z- I r

=~ ioo ( -0," _ -021%)(Sin at _ cos at)],. it ) dtO'.z sze sle tZ t O\r,
81- 8z 0 a

= po ioo ( -o.'z _ _...z)(Sin at _ cos at)J (t ) dt
O'n ( )~ Id e e tZ t I r ,81 -Sz V 0 a

pov(alz-au)ioo( -.." _"I%)(Sinat_cosat)J(t)dtU,= slpze -8zPle -atl -t-Z- 1 r ,
81- 8z 0

Let us introduce the foUowing notations:

c = roo (Sin at_~)],It) -0'" dt
iJ Jo atl atl-I 0\ r e
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(25)

i = 1,2 and j=2,3 (26)

_ r"(sinat_~) -0"DiJ - Jo ---ail ti-! JI(tr) e I dt.

Then, the formulae for stresses and displacements take the form:

0'",= Po{(SI _~:)Yd (StCI,2- 8zCd+ r(81~82) (SIP2DI,3- SzPIDZ,3)} ,

0'.. = PO{(SI _ 8;){:'C -d) (SlqZCI.Z- 8zqICz.z)- r(SI~ S2) (8IPzD I•l - sZPIDZ.l)} '

S2C1.2 - S1CZ.2
fT. - P
n- 0 SI-S2 '

With:

St.1 =LooSi~ atJo(tr)e-'''z dt,

Sll =Loo si~ atJI(tr) e-','Z dt,

rtl =Loo co: atJI(tr) e-"" dt,

(27)

(28)
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the integrals Cij and Di,J are reduced to the following expressions:

C 2 = 1-.!.(rS!I+sizSI)l. a I. I, ,

(29)

f),2 = J.. (,5- 1 - S·ZSII- aT1
1)

I, 2a I. I~, I, ,

We find for integrals (28) the analytic expressions:

a - {3j
Si.1 = arc tg---,

ai +SjZ

When

S\={3i+ a
l. r'

T 1 _ai -SiZ
j.I--,-'

{3.= - siza
I •

aj

(30)

(31)

Thus for any point of the medium, we can calculate aj, {3;, 'ri. Next we determine successively
integrals S~h S[I and nl and the integrals CI.i, DJ,j. Finally, by means of formulae (27), we find
stress tensor and the displacement at every point.

(c) Distributions along special lines
(i) Axis of punching. With r = 0, the stress and displacement expressions (27) reduce to the

following relations:

{
SIS2 Z { a a )}U tl = - po 1+--.- arctg - - arctg - ,

SI S2 a SIZ S2Z

U n = 0,

Ur =0,

(32)

(ii) Horizontal surface. For Z = 0, the integrals SI.I S;.I and TI. 1 lead us to consider two
possibilities:

I - 0 < , ~ a: points inside the contact area:
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We obtain

I _a-y(a'-r~
Sl,I- r '

and thus, we deduce from expressions (27):

U". =0,

2- r;;;!: a, points outside the contact area. In this case, we have:

C' • a
1.Jl.1 = arc sInr'

T 1 _ y(r'-a')
1.1- r '

Thus:

Un =0'". =0,

235

(33)

(34)

We notice that, from the expressions for the stresses, on the surface of the transversely
isotropic half-space. the stresses 0',.., u,. and u•• are principal, and outside the area contact we
have a pure shear stress state.

Moreover, outside the contact area the stresses are directly proportional to the contact force
P and they are independent of the radius R of the sphere.

We have thus the same properties as for the punching of the isotropic half-space (classical
Hertz formulae).

5. OBSERVATION

This calculus was indeed performed because we wanted to extend the application field of our
two new non-destructive methods to measure whether the elastic limit or the residual stress
tensor in any point inside an isotropic structure.
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Elastic contact

o

Isotropic case

--------i2
Z/O,

Fig. I. Isotropic case: all = all = OlE); al. = all = - (afE); a.. = 2(all - at.) = [20 +u)IE); s, = I; s. = I;
1(p./2) - O/v'd)1 = 10 +2u)121 < I.

o

Fig. 2. Magnesium: all =2.2Ix 10-lI m'IN; al2=-7.7xI0- 12 m'/N; all=-4.9xlO- 12 m'/N; a,,=
1.97 x 10- 11 m'lN; a.. = 6.03 x 10- 11 m'/N; s, = 1.388; s. = 0.705; (/lo12) - Olv'd) = - 0.77.
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ZInc z/a 2

Fig. 3. Zinc: all =8.23 x lO-lZm'/N; a., =-3.4x 10-"m'/N; a" =-6.6x to-"m'/N; a33 '"
2.64>< to-II m'/N; a.. '" 2.5 x 10-1l m'/N; $, '" 1.085+0.652i; $, '" 1.085-0.652i; (j.I/2)-(I/Yd)= -1.16.

r/a 2

2

II

6

4

3
Cadmium

-J_____ 2

r/a

Fig. 4. Cadmium: all'" 1.29x 10-11 m2/N; a 12 =-1.5XI0-'2 m'/N; a 13 =-9.3xl0-12 m'/N; an=
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Hexagonal single crystals are transversely elastically isotropic. Some composite materials and
some woods present this kind of anisotropy too. But until now, their plastic properties are not yet
well known.

Before doing any theoretical or experimental study for these materials, it was necessary to
have the induced stress field for the elastic punching explicitly (see, i.e. [6)).

For the isotropic materials and chiefly for metals, two criteria of plasticity are currently used:
Mises's criterion and Tresca's criterion. For anisotropic materials it is not generally possible to
use them.

However, just for showing the influence of the anisotropy in the elastic punching, we give
here-after the plotting of Mises's criterion for an isotropic material and 3 transversely isotropic
materials.

If the inequality:

l!!:--l1<1
2 Vd

(35)

is satisfied the maximum of the criterion is on the axis of punching. It is off the axis if (35) is not
satisfied.
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